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A Network Pump 
Myong H. Kang, Ira S. Moskowitz, Member, IEEE, and Daniel C. Lee, Member, IEEE 

Abstract-A designer of reliable multi-level secure (MLS) networks must consider covert channels and denial of service attacks in 
addition to traditional network Performance measures such as throughput, fairness, and reliability. In this paper we show how to 
extend the NRL data Pump to a certain MLS network architecture in order to balance the requirements of congestion control, 
fairness, good performance, and reliability against those of minimal threats from covert channels and denial of service attacks. We 
back up our claims with simulation results. 

Index Terms-Covert channel, flow control, gateway, information theory, router, security. 

+ 
1 INTRODUCTION 

MULTI-LEVEL secure (MLS) system stores and processes A information of different sensitivity levels in a secure 
manner. By this we mean that access is controlled so that no 
high level information is allowed to pass to lower level 
users/processes (Low) but lower level information is avail- 
able to higher level users/processes (High) [3]. 

Thus, an MLS system allows Low to send messages to 
High, but High should not be able to send messages to 
Low. On the other hand, acknowledgments (ACK) to Low 
that High has received its messages are necessary for reli- 
ability and performance. This is especially true for distrib- 
uted systems in which the communication channels may 
not always be reliable. High, however, can manipulate the 
times that ACKs arrive in order to covertly send unauthor- 
ized messages to Low. Therefore, we see that MLS security 
is in conflict with the need for functionality. 

The Pump, developed at NRL [6], 171, solves the di- 
lemma of simultaneously assuring reliability, performance, 
and security when there is only one Low and one High. We 
will refer to this as the basic Pump. The basic Pump allows 
High to send ACKs to Low indiredly through an interme- 
diary communication buffer. Further, the basic Pump re- 
quires that Low receive the ACKs at probabilistic time inter- 
vals. This probabilistic ACK is based upon past High activity. 

Since computer systems are becoming more open and 
interconnected, denial of service problems are receiving 
more attention [ X I .  Hence, security devices such as the 
Pump should also provide protectioin against such attacks. 

This paper addresses how to adapt the basic Pump for 
use in a network environment, where we have multiple 
Lows and multiple Highs. We will refer to this as the 
"network Pump." As we move from a dedicated data net- 
work to the Broadband Integrated Service Digital Network 
(B-ISDN) such as the Asynchronous Transfer Mode (ATM) 
Network [9], the issues of congestion control, fairness, and 
reliability become extremely important and extremely 
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complicated. The network community itself has not worked 
all of these issues out yet. Our problem is even more com- 
plex because we are coupling security (i.e., covert channels 
[lo] and denial of service) with the above. 

1.1 Assumptions and Terminology 
The network environment that is considered i s  shown in 
Fig. 1. Each Low (High) is at the same low (high) level. Pos- 
sible implementations of the network Pump are a packet 
switch between workstations, a router connecting local area 
network segments, etc. 

Network 
I Low inputs J High outputs 

Fig. 1. The Pump in a network environment. 

There are many Lows (Lj) and Highs (Hj), and they are 
untrusted processes, thus they may contain Trojan Horses 
(malicious software). The network Pump is a trusted proc- 
ess (assured to be free of malicious software) which medi- 
ates traffic from Lows to Highs. Each message that will be 
routed from a Low to a High has a message number (ID), 
and input and output addresses associated with it. For sim- 
plicity, we assume that all messages have the same length. 
We do not consider multicasting in this paper. We further 
assume that Lows (Highs) do not communicate among 
themselves to simplify the covert channel analysis. 

A session is a connection between any Low and any 
High. In Fig. 1 there are I x J distinct sessions. During each 
sessionq, a message leaves Lj, travels over linkj, goes into 
the network Pump, and after processing leaves the network 
Pump over link', and arrives at Hj. We assume that all 
propagation delays are zero for conceptual simplicity.' The 
minimal processing time of the network Pump is a fixed 
overhead value 0,, which is small enough so that the net- 
work Pump itself never becomes a performance bottleneck. 

1. This assumption is true for the basic Pump also. It can be easily relaxed 
in both cases. 
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The demand (input) rate Alj is the rate demanded by L, 
destined for Hi. Each HI behaves as a server with service 
rate plj. This is the inverse of the mean time of service by HI 
for messages from L,. 

1.2 Objectives 
Most network resources are dynamically shared for effi- 
ciency reasons. If this dynamic sharing is not carefully con- 
trolled, then inefficiency and delays occur [4]. The main 
functions of congestion control in a network are: 

To prevent inputs from sending messages faster than 
the outputs can handle them. 
To prevent throughput degradation and loss of effi- 
ciency from overloading the network. 

* To prevent unfair allocation of network resources 
from competing inputs. 

Since the network Pump is a shared resource among many 
sessions, it should provide the congestion control mecha- 
nism. Let us discuss the specific objectives required of the 
network Pump. 

1.2.1 Reliability/ Handshaking 
The reliability requirement can be simply stated as no loss of 
messages and no duplication of messages. To satisfy this re- 
quirement ACKs and message numbers (ID) are necessary. 
The network Pump has a reliability protocol that works as 
follows: 

If a Low has not received ACK by time-out after sending 
a message, it will retransmit the same message. If a High 
receives the same message then it will keep only one copy. 

Further, a Low does not send the next message to a spe- 
cific High until its previous message to that High has been 
ACKed (handshake protocol). 

1.2.2 Performance 
We desire good performance. The network Pump’s control 
over the time of sending the ACKs to a Low can be utilized 
for congestion control. The network Pump is designed to 
exercise congestion control. The network Pump controls the 
rates into itself, the realized (input) rates, by slaving Low’s 
message transmission to the average rates out (service 
rates) of the network Pump. It does so by moderating the 
ACK rate to a Low, since this Low will not send a new mes- 
sage until it receives an ACK from the previous message 
from the same session (the handshake protocol). 

If the service rates are greater than the demand rates, 
then the network Pump should not hurt performance. If 
service rates or output capacities are less than the demand 
rates, then the outputs cannot handle their inputs. There- 
fore, the network Pump by slowing the demand rate to the 
realized rate, alleviates congestion, and at the worst, does 
not lessen total throughput. 

1.2.3 Fairness 
Bandwidth of communication links, transmission speed, 
and processing speed are all limited. Therefore, if the load 
of data traffic offered to the network Pump exceeds its ca- 
pability, some of the load must be cut. The load must be cut 
fairly for all the sessions that share the network Pump. The 
idea is shown in Fig. 2 where the illustrated output limita- 

tion is due to limited output link capacity. Note, in denial of 
service attacks (discussed later), the limitation is usually 
due to decrease in the High service rate. 

Demand Rate Realized Rate 

Routing 
with 
fairness 

s criterion 

Infinite link capacity Limited Link capacity 

Fig. 2. Fairness 

Fairness can be defined in different ways. One fairness 
policy is max-min faiuness. This policy says all sessions 
should get bandwidth according to the following crite- 
rion-the smallest realized rate is as large as possible and, 
given this, the second-smallest realized rate is as large as 
possible, etc. [5]. For example, if there are three sessions 
whose demand rates (units of messages per unit time) are 
0.4, 0.5, 0.6 and the output capacity equals 1, then all three 
sessions will have realized rates of 1/3, 1/3, 1/3 under 
max-min fairness. If one session demands less than what it 
can get, the leftover bandwidth will be equally shared 
among the rest of the sessions. For example, if there are 
three sessions whose demand rates are 0.2, 0.5, 0.6 and the 
output capacity equals 1 then those sessions will have real- 
ized rates 0.2,0.4,0.4, respectively, under max-min fairness. 

The advantages of this policy are 1) there is a simple way 
to implement this policy (i.e., round-robin scheduling [5]) 
and 2) the scheduling scheme does not need to know the 
demand rates of sessions which may not always be known. 
Since this policy gives preference to sessions that have 
lower demand rate, it does not allow a session to take the 
entire bandwidth if there is more than one session. One 
disadvantage of this policy is that a heavily demanded ses- 
sion is penalized more than a lightly demanded session 
(i.e., not sensitive to demand rates). 

There are other fairness policies, such as the proportional 
policy [20]. This policy allocates bandwidth in proportion 
to each input demand rate. The network community does 
not have a “best” fairness policy. The network Pump uses 
max-min fairness because of the above advantages. 

7.2.4 Covert Channels 
It is well known that the ACK stream that is required to 
satisfy the reliability requirement introduces covert com- 
munication channels. This was the motivation for devel- 
oping the basic Pump over the conventional store and for- 
ward buffer type of communication. We will show in Sec- 
tion 3.2, using results from [6], [7], that the capacity of the 
covert channels can be made negligible. 

1.2.5 Denial of Service 
We interpret the denial of service attack in a broad sense in 
the network environment: 

If a session cannot achieve its intended throughput due to 
the misbehavior of other sessions then the session is under a 
denial of service attack. 
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Since the network Pump is a shared resource among 
several sessions, services for other sessions can be poten- 
tially disrupted if too much resource is allocated to one 
particular session. The design of the network Pump should 
prevent such a situation. 

2 BACKGROUND-THE BASIC PUMP 

In the basic Pump our concern is sending messages from 
(one) Low to (one) High. In [6], [7], [19], we reviewed why 
traditional communication protocols (including wad-down 
and blind write-up) cannot satisfy the needs for reliability, 
performance, and security simultaneously. As a solution, 
the basic Pump was introduced as shown in Fig. 3. 

Pump 

~ y { ~ ~ ~ = ~  messages 

ACK 
buffer 

Fig. 3. The Basic Pump 

The basic Pump [6] places a buffer (size n) between Low 
and High, and gives ACKs at probabilistic times to Low 
based upon a moving average ( M A )  of the past m High 
ACK times. A High ACK time is the time from when the 
buffer sends a message to High to the time when the buffer 
receives Highs ACK. Thus, basing Low ACK times upon 
past High activity has the double benefit of 1) keeping the 
buffer from filling up and 2) having a minimal negative 
impact upon performance. The Low ACK time is the time 
from when Low sends a message to the basic Pump to the 
time when Low receives the basic Pump’s ACK. The Low 
ACK time is a slightly modified exponential random vari- 
able 171 with mean equal to M A .  Intuitively, the modifica- 
tion is 1) a truncation of the exponential density at a design 
parameter time-out and 2) a shift by an amount of time 
equal to the minimum processing time (T,) of a message if 
there is space on the buffer. When Low must wait for space 
on the buffer, the above holds, except the shift is equal to T, 
= madwait time for space, minimum processing time). 
Thus, the Low ACK time is a random variable that takes 
values between T, and time-out. (In [7] we have slightly 
modified this over the first exposition of the basic Pump [6] 
to introduce extra noise. However, for the network Pump 
we stay with the simpler formulation due to the extra noise 
from multiple users and a modified ACK scheme (see Sec- 
tion 3.2, Covert Channel Analysis).) 

At present, an implementation of the basic Pump is run- 
ning on a XTS-300 platform [14]. Early results, along with the 
simulation results of Kang and Moskowitz [7], show a proof 
of concept for the basic Pump. Based upon this and the need 
for a secure network congestion medliator we feel the exten- 
sion to the network environment is proper. Presently, a pro- 
totype network Pump is being built in hardware as a guard 
by NRL‘s Center for High Assurance Computer Systems [22]. 

3 AN ARCHITECTURE OF THE NETWORK PUMP 

The architecture of a network Pump is shown in Fig. 4. 

33 1 

/p 

Fig. 4. A logical view of the network Pump. 

Each component of the network Pump works as follows: 

LOWS AND HIGHS (EXTERIOR TO THE NETWORK PUMP). LOWS 

(Highs) is the set of inputs (outputs) to the network 
Pump. Lows (Highs) consists of I (J) processes non- 
communicating among themselves. Each Low, L, can 
strive to send messages to any High, Hp with various 
demand rates as discussed before. Since L, is outside of 
the network Pump we assume the Li has some procedure 
for sending messages over link;, the only constraint be- 
ing that the demand rates are Alp such that XjA, 5 capac- 
ity of link,. Consider sessioni,-after Li sends a message 
to Hp it waits for the ACK to that message from the net- 
work Pump. Once this ACK arrives, L, can send another 
message to Hj. Therefore, each Low can only send a new 
message in each session after it has received the ACK of 
the previous message from the network Pump 
(handshake protocol). When H, receives a message from 
the network Pump it sends an ACK back after the ap- 
propriate service time to the network Pump. 

RECEIVERS. There is a receiveri for each L,. In receiver,, there 
are J slots; slotj stores a messages from session, until it is 
routed by the TLP. 

TRUSTED LOW PROCESS (TLP). The TLP takes a message from 
a receiver and routes it to the appropriate output buffer. 
We denote by T, the time from when a message is sent 
from a Low to the time when that message is placed in 
the appropriate output buffer. (We will also refer to T,. as 
”routing time” in the network Pump.) If there is available 
space in the output buffer, T, is equal to the overhead 0,. 
If there is no space, the message is not placed until there is 
a space available. Therefore, T,. includes both 0, and the 
amount of time the message waits until the output buffer 
is available. After the message is routed to the output 
buffer, the TLP is ready to send an ACK back to the ap- 
propriate L,. The time this ACK arrives at Li depends on 
the randomization scheme, but is always at least T,. 

OUTPUT BUFFERS. There are I logical output buffers for H,, 
each denoted as bufferij. A message from sessionij will be 
stored in buffer,.. 

TRUSTED HIGH PROCESSES (THE’$. THP, delivers a message 
from bufferi, to Hj according to a scheduling scheme. 
THP, cannot deliver another message from bufferii until 
the prior message from bufferij is ACKed (by Hi). 

3.1 A Detailed Design 
A detailed design rationale is described in this section. 
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3.1.1 Trusted High Processes 
THP, plays an important role in scheduling delivery from 
output buffers to HI and in computing moving averages. 
Fig. 5 graphically describes the role of a THP,. 

bufferl-[ 

buffer2- 

buffer,- 

Fig. 5. A closer view of a trusted high process 

Consider THP,-it has to deliver messages from each 
buffer,] to Hj. Since the capacity of link' is limited by physi- 
cal considerations and inputs may send more messages 
than link' or Hi can handle, THP, needs some scheduling 
scheme. This scheduling scheme determines the fairness 
among different inputs. 

The network Pump uses round-robin scheduling because 
it is simple and achieves max-min fairness [51. For example, if 
THP, has to serve three output buffers then an opportunity to 
send a message is given in the order of buffer,], buffer,,, 
buffer,], buffer,], .... If buffer2] does not have any message to 
send then the opportunity is transferred to buffer3, and the 
next opportunity is given to buffery, and so on. 

THP, also maintains and updates moving averages 
(MAlI., ..., MAIj). The reason for THP, to maintain I separate 
moving averages (i.e., one per session) instead of one com- 
bined moving average is that HI may service messages from 
different Lows at different rates. Throughout this paper we 
assume that the message service time is not a performance 
bottleneck in the benign case. In other words, the bottleneck 
is output links, not servers, unless the system is under de- 
nial of service or covert channel attacks. 

Since there is potentially more than one input, the 
method of computing moving averages is different from 
when there is only one input. When there is only one input, 
the moving average is computed based on the interval from 
the time the message is sent to High, to the time the ACK 
arrived from High. However, if there is more than one in- 
put, the message is ready to be sent by the Pump, but can- 
not be sent because the output link is not available due to 
the round-robin scheduling. This additional waiting time 
must be taken into account or else the input messages will 
flood the output buffers. 

Specifically, MAii of the network Pump is the moving 
average of the last m ACK times from Hj to bufferij. An 
ACK time from Hj is the difference between when buffer,] 
receives ACK from Hj and max(time that message arrived in 
bufferii, time that the previous message from buffer, was 
ACKed by Hj). In other words, if bufferij is not empty then 
the previous ACK time by Hj is used to compute the mov- 
ing average. However, if bufferii is empty when a new mes- 
sage arrives then we use the arrival time instead of the pre- 
vious ACK time. 

3.1.2 Output Buffers 
The number of messages in bufferii is important to achieve 
fairness [51 (the bigger the number of messages in bufferij 
the fairer). This is because our round-robin scheduler does 
not take burstiness into account. The way to handle bursts 
is to have enough messages queued in buffer!, so that times 
of abundance and starvation (with respect to message arri- 
vals) are balanced out. In fact, it is desirable to keep the 
queue length in buffer, positive so that max-min fairness is 
preserved. However, if the queue length is too big we have 
potential covert channel and denial of service problems. 
Thus, it is desirable to keep the queue length at a certain 
level. To address this issue, we introduce the concept of Fair 
size, which is a design parameter targeted for the desirable 
queue length. Intuitively, the burstier the input, the larger 
the Fair size must be. Note that Fair size has to be intelli- 
gently chosen so that one session cannot dominate (fill) the 
total output buffer and at the same time large enough to 
accommodate burstiness. Good design requires that the 
total output buffer has at least Fair size surplus spaces in 
addition to sum of the Fair size spaces allocated for all ses- 
sions. Intuitively, if all sessions are active and behaving, this 
design leaves us with at least Fair size spaces in the total out- 
put buffer. Fig. 6 pictorially shows buffer,, where the number 
of messages in the buffer fluctuates around the Faiv size. 

Fa i r  s i ze  

c 

Fig. 6. A closer view of buffer,,. 

Since the network Pump has a built-in mechanism to 
share output buffers fairly among different sessions (i.e., 
moving average construction to control input rates which 
~7ill be discussed in Section3.1.3), all output buffers are 
dynamically shared among different sessions. 

3.1.3 Trusted Low Process 
When routing requests arrive from receivers, the TLP 
routes messages to the proper output buffers and reads the 
current moving average value. Once the message is deliv- 
ered, the TLP is ready to send an ACK. However, this ACK 
will be delayed depending on the moving average of the 
session and the randomization scheme. The network Pump 
uses a similar randomization scheme as the basic Pump 
whose details are presented in [6], [7]. As described in Sec- 
tion 2, the TLP of the basic Pump delays ACKs based on a 
modified exponential random distribution whose mean is 
the moving average of the session. This ACK rate controls 
the input rates, through the handshake protocol, if the de- 
mand rate is higher than the ACK rate. 

As we discussed in Section 3.1.2, we wish to make sure 
that the number of messages in an output buffer fluctuates 
around the Fair size. To achieve this, we modify the ACK 
scheme from the basic Pump. The way the basic Pump 
controls the ACK time to Low can be written as follows: 
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, t i m e -  ou t )  otherwise ACK time = 

where T, is the same as in Section 2, and Sr[MA - T‘,] is a 
draw from a random distribution as also described in Sec- 
tion2. (Note that there is only one session in the basic 
Pump.) Recall that T, is the time between when the a mes- 
sage is sent from Low to when the message is placed in the 
output buffer. Hence, a random delay is included in the 
ACK time in addition to T, if M A  - T, > 0. A detailed de- 
scription can be found in [7]. 

We now describe the way the network Pump controls 
ACK times to L, for a message in each session. Let f,(x) be a 
draw from the exponential distribution with mean x. Define 

Q = fY(MAll  - T,) + k . (N - Fair size) 

where N is the number of messages in buffer, at the time 
the message is placed in buffer,,, and k . (N - Fair size) is a 
feedback term. Both k and Fair size can be chosen by a sys- 
tem designer. Note that the moving average of the ACK 
times from H, to the network Pump is computed separately 
for each session. For session,, the ACK time to Low for each 
message is: 

T, if MAl1 - T, 5 0 or Q 5 0 
min(T, + Q, time- out )  otherwise 

ACK time = 

We now elaborate the rationale of the extra term k . (N - Fair 
size) in Q. As long as L, has messages to send to HI, the net- 
work Pump wants to keep buffer, nonempty. The reason is 
to prevent missing the round-robin turn, and thus to give 
each session throughput close to max-min fairness. There- 
fore, when the number of messages in buffer, is less than 
the Fair size, the network Pump reduces its ACK time to L, 
in order to accelerate the input rate, as seen in the extra 
term. On the other hand, if buffer, is often full, we have 
covert channel problems (see Section 3.2). Hence, the net- 
work Pump decreases the input rate by increasing the ACK 
time to L, when the number of messages in buffer, is larger 
than the Fair size. 

In the simulation that is described in Section4, we 
choose k = MA,/(Fair size) (see Section 4 for the discussion 
of how the Fair size was chosen for the simulation). Thus 

Therefore, we have 

avg(ACK time) = T, + aug(Q) = M A  

Note that aug(N) is close to the Fair size due to the second 
term of Q. Thus, we have avg(ACK time) = MA,. 

3.1.4 Receivers 
Receivers receive messages from Lows and request routing 
to the TLP. Each receiver contains 1 slots (size one buffers) 
so that the inputs from one session do not interfere with 
inputs from other sessions. Messages in the slots will either 
be routed or discarded after time-out (if there is no output 
buffer available). 

3.2 Design Review 
In this section, we review the design of the network Pump 
and explain how the objectives in Section 1.2 are satisfied. 
We back our claims on performance, fairness, and denial of 
service by the simulation results presented in Section 4. 

3.2. 1 Reliability 
Due to the reliability protocol requirement that was speci- 
fied in Section1.2 (i.e., ACK, retransmission of the same 
message after time-out, and message ID), the network 
Pump provides as much reliability as TCP. Also, the High 
ACK of the Pump can be realized as an ACK of an applica- 
tion layer protocol to provide reliability at the application 
layer. There are some secure system protocols which do not 
use acknowledgements, but they are not reliable [19], [2]. 

3.2.2 Performance 
The network Pump does not hurt performance 
(throughput). Consider the following two cases where out- 
put link capacities are not a bottleneck: 

Demand rate is faster than the service rate. The network 
Pump’s ACK rate, which is tied to the moving aver- 
age of the server will slow down input to match the 
servers. However, this will not degrade performance 
because the throughput will be determined by the 
service rate which is the performance bottleneck. 
Demand rate is slower than the service rate. The network 
Pump’s ACK rate will not slow down the input rate in 
this case. Hence, there is no effect on performance. 

If the output link capacities are a bottleneck, the network 
Pump’s max-min fairness criteria and the moving average 
construction assures us that performance is not penalized 
(Section 3.1.1). Hence, the network Pump does not affect the 
throughput unless the network Pump itself is the bottleneck. 

3.2.3 Fairness 
The network Pump uses a round-robin scheduling scheme 
which achieves max-min fairness at each THP, if all inputs 
can accumulate enough messages at output buffers. The 
network Pump’s modified moving average construction 
that was described in Section 3.1.3 encourages all inputs to 
send as many messages as possible up to the Fair size. Hence, 
the network Pump strives to achieve max-min fairness. 

3.2.4 Covert Channel Analysis 
A major reason that the network Pump uses a randomized 
ACK stream, aside from fair congestion control is to mini- 
mize the threat of covert communication from a High to a 
Low. Ideally, a secure computer system does not allow a 
communication channel from a high level user/process to a 
low level user/process [lo]. However, in reality, unless we 
want a nonresponsive or nonreliable system, such covert 
channels are a fact of life. Given that, one must try to find 
ways to minimize illicit information leakage from such cov- 
ert channels. The covert channels that concern us in this 
paper are timing channels [12], [15], [24]-these are covert 
channels where the output symbols are distinguished by 
their different time values. 

The specific timing channels that concern us have been 
discussed in detail in other papers [61, [71, [131, [161, so we 
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present only a brief review here. Let us start off with a sim- 
ple scenario: a single low (Low) and a single high (High) 
with a store and forward buffer (SAFB) between them. Low 
sends a message to the SAFB. When this message is stored 
in the SAFB, the SAFB sends an ACK back to Low and then 
Low can send its next message to the SAFB. The SAFB at- 
tempts to send the message to High and when High has 
successfully received the message from the SAFB, High 
sends an ACK to the SAFB and the message is removed 
from the SAFB. For obvious reliability concerns, we do not 
allow Low to write over messages in the SAFB before they 
have been read out by High. Therefore, when the buffer is 
full it stops receiving messages from Low. This opens up 
what is referred to as the full buffer channel (FBC) between 
High and Low. High, by intentionally slowing or stopping 
its receiving of messages from the SAFB, can cause the 
SAFB to become full. Then High can remove messages to 
allow space to open up on the SAFB and for Low to again 
receive an ACK from the SAFB and send new messages. 
Therefore, High can manipulate the timing of the ACK 
stream to Low from the SAFB. Let us do a worst-case in- 
formation theoretic analysis of the FBC to see how much 
information can actually be leaked from High to Low and 
hence how insecure our system may be. 

The FBC is a timing channel. To exploit the FBC it is as- 
sumed that Trojan horses (malicious software in both Low 
and High) are in the computer system. The Trojan horses 
control when Low sends a message and when High sends 
an ACK back to the SAFB. 

A Trojan horse fills the SAFB by (High) not removing 
messages from the SAFB. 
Now that the SAFB is full, a noiseless timing channel 
exists between High and Low. Furthermore, this 
noiseless channel exists as long as the SAFB is full. 
Now Low sends a message to the SAFB. The SAFB 
cannot send an ACK back to Low until a spot opens 
up on the SAFB. If High happens to remove a mes- 
sage as soon as (or before) Low sends a message, then 
Low only waits an overhead time 0, for an ACK. We 
assume that High, by removing messages from a full 
SAFB, can affect the ACK time to Low in increments 
of i f ,  i = 0, 1, 2, .... Assuming Trojan horses know the 
size of the SAFB (i.e., n)  and how fast the Trojan horse 
can send a message, High knows that Low has filled 
the SAFB and has just sent a new message to the 
SAFB. If Low gets an ACK at time 0, + ic, Low inter- 
prets the signal as the (i + 1)st symbol. Since every 
time Low receives an ACK, the SAFB is full again, 
and Low can then send its new message-High can 
noiselessly send symbols again. 

With this example we are looking at a worst-case sce- 
nario. High will try to send symbols as quickly as possible, 
hence the time values of 0, + k. Of course this allows un- 
bounded response times. Real systems have timeouts and 
we assume that the timeouts in question are very large in 
comparison to 0, 2 E, so that examining a communication 
channel with i bounded changes the analysis very little 
from assuming that i is unbounded. The time units of our 
system are such that e is an integer, i.e., E is an integer 

number of system clock ticks (either reading from a system 
real-time clock or instruction counts from a tight loop). The 
channel capacity [231 of this channel is given by 

C = lim sup ~ log !(') bits per clock tick 
k+- 

where the logarithms are base two and N(k)  is the number 
of distinct sequences of symbols (ACK times) that take a 
total of time k. It can be shown 1231, 1121, [131, 1161 that 

C = log w, where w is the positive zero of 1 - (x + Ye). 
The polynomial arises from the limiting behavior of the 
recurrence relation 

-0v 

N(k)  = N(k - 0,) + N(k - (0, + E)) + N(k - (0, + 26)) + .... 
0, Define q by = q .  Note that q need not be an integer. 

By changing variables and letting y = X' we see that U' is the 

positive zero of 1 - ( Y - ~  + y-*). Unfortunately, the only 
closed form solution for such polynomials [13] involve spe- 
cial functions. For certain special cases such as q = 1 we can 
obtain the trivial closed form solution that C = 1 / ~ .  Simi- 

1 1 + J s  
larly for q = 2, we have C = E- log- 2 

The basic Pump, which deals with a single Low and a 
single High, was designed to minimize the threat of the 
FBC by modifying the SAFB by using probabilistic ACK 
times. The probabilistic arrival times of the ACKs introduce 
noise into the timing channel. Also, the basic Pump pre- 
vents the buffer from becoming/staying full. These two 
effects, the noise and the fact that the buffer is hardly ever 
full, severely diminish the channel capacity of various ex- 
ploitations of the FBC. Bounds on the actual covert exploi- 
tation of the basic Pump are given by capacity reduction 
formulas in 161 and more precisely in 171. In brief, a rela- 
tionship between the buffer size n and the moving average 
parameter, m, was given with respect to the desired percent 
reduction of the covert channel capacity. Hence, either 
analytically or numerically, we have a way to measure the 
maximal information leakage from High to Low in the basic 
Pump. We will show that these reductions also hold for 
covert channel exploitations of the network Pump. 

In the network Pump, our Trojan horse scenario is that 
one particular HI and one particular L, are in cahoots via 
cooperating Trojan horses (recall that we are looking at the 
situation where the Lows (Highs) do not communicate 
among themselves)-thus we again have the potential for 
the FBC. However, the fact that there are other users of the 
network Pump means that noise is introduced into the FBC 
which does not occur in the case of one Low and one High. 
Thus, the covert channel analysis from the basic Pump still 
holds for the network Pump as a worst-case scenario (we 
can very conservatively replace the buffer size of the basic 
Pump, n, by the Fair size in the capacity reduction formulas 
[7]). This is because in the network Pump, instead of just 
attempting to keep the total buffer from become full, we 
attempt to keep the total buffer around (the number of ac- 
tive sessions x Fair size). Hence, for a misbehaving session 
to fill the total buffer, and thus exploit the FBC, it requires 
that session to fill the unused total buffer spaces which are 



KANG ET AL.: A NETWORK PUMP 335 

at least Fair size in number (see Section 3.1.2). Therefore, we 
can use the capacity reduction formulas from [7], where 
there is one Low and one High as an upper bound. These 
reduction formulas tell us how to choose the Fair size and 
the moving average parameter, m, to ensure that any covert 
channel capacity is within a specified bound. This bound 
becomes even more conservative as I and J increase due to 
the increasing noise of multiple users being on the system. 
Therefore, given values of 0, and E, we can choose a Fair 
size and moving average parameter, m, to reduce the po- 
tential covert channel capacity to within a specified value. 

In the basic Pump there is a statistical channel [171 from 
High to Low, when the buffer is not full, caused by Low 
attempting to correlate the ACK times to High‘s actions. As 
the number of terms making up the moving average grows, 
this correlation decreases, and hence the channel capacity 
decreases. The same holds as well for the network Pump 
and again the multiple users introduce spurious noise 
which further serves to confound any meaningful inter- 
pretation of the ACK times. Also, the Fair size further frus- 
trates correlation attempts by L,. Therefore, the bounds 
from the basic Pump again hold. 

Finally, the network Pump (as well as the basic Pump) is 
sensitive to the small message criterion 1181. By this we 
mean even if one has a channel with small, or even zero, 
capacity it might still be possible to send small, possibly 
noisy, messages relatively quickly. The network Pump, be- 
cause of its buffer management and randomization scheme, 
is designed to thwart an attempt at sending meaningful 
short messages, see [7, Section 41 for details. 

3.2.5 Denial of Service 
In the network environment denial of service can occur in 
the following two cases: 

1) A server slows down. 
2) An input sends messages faster than the rate that the 

In these cases, the shared resources will be monopolized by 
this specific session so that other sessions cannot use re- 
quired resources. 

The above cases will not happen if the network Pump 
mediates between the Lows and Highs because the network 
Pump monitors the servers’ activities and tracks service 
rates. The service rate will be reflected in the ACK rate to L, 
through the moving average construction. Due to the net- 
work Pump’s handshake protocol and moving average 
construction, inputs (Lows) cannot send any more than the 
servers (Highs) can handle. 

intended server can handle them. 

4 SIMULATION RESULTS 
To substantiate our claims on performance, fairness and de- 
nial of service, simulation experiments have been conducted. 

4.1 Simulation Set Up 
In our simulation scenario, there are three Lows (Ll, L,, L3) 
and three Highs (HI, H2, H3); hence nine sessions. The ca- 
pacities of all input and output links are 1.0. All demanded 
inputs have Poisson arrival distributions. Demand rates 

from L,  are AI, = 0.5, AI* = 0.3, A,, = 0.2, the demand rates 
from L, are = 0.4, = 0.4, = 0.2, and the demand 
rates from L, are ;S1 = 0.4, jS2 = 0.5, ;S3 = 0.1 (see Fig. 7). 

All Highs have 2-Erlang distributed service rates. The 2- 
Erlang distribution is often used to model the time to com- 
plete a task [8]. For the benign case all service rates are set 
to 2.0 (to demonstrate the output links being the bottle- 
necks, any value greater than 1.0 would suffice). For denial 
of service simulation, service rates are pIl = 2.0, p,, = 0.1, 
and p,3 = 2.0 for i = 1,2,3. 

I I 

~ 1.0 0 
0.1 H3 

!-ti, = 2.0 

plZ = 2.0 for benign case 
p,z = 0.1 for denial of service 

pi3 = 2.0 

Fig. 7. The simulation scenario. 

The performance and fairness of the following two sys- 
tems and the ”ideal” case are compared under different 
total output buffer sizes. 

The network Pump as described in Section 3. The last 
30 High ACK times are used to compute the moving 
average (i.e., m = 30) and the Fair size per session was 
set to 1/10 of the total output buffer size. Note that 
there are nine sessions in our scenario. 
The Nonpump. This is the same as the network Pump 
(still has the handshake protocol) except that it does not 
have the moving average or probabilistic construction. 
(Thus, output buffer space is allocated to each session 
on a first come first served basis.) In other words, 
ACKs will be sent to Lows as soon as the message is 
routed. Hence, demand rates will be forcibly adjusted 
to the realized rate only when there are no available 
output buffers. The purpose of this system is to demon- 
strate the importance of congestion control. 
The ideal case is where the max-min fairness rates are 
achieved over the output links. The max-min rates for 
HI are (1/3, 1/3, 1/31, for H2 they are (0.3, 0.35, 0.351, 
and for H3 they are (0.2, 0.2, 0.1). Hence, these are the 
ideal versions to which we compare the network 
Pump and the Nonpump. 

4.2 Simulation Results in the Benign Case 
In the benign case (i.e., inputs and outputs behave-no 
Trojan horses are present), there is not much of a perform- 
ance difference between the network Pump and the Non- 
pump even though the network Pump performs slightly 
better than the Nonpump. This slight performance differ- 
ence comes from the congestion control mechanism. Since 
the Nonpump has little congestion control, some inputs still 
send more messages than the intended server can handle. 
This causes an unfair sharing of resources and degrades 
performance. This effect will be magnified under the denial 



336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

0 . 3  

0 . 2  

0.1 

0 . 4  

0 . 3  

0 . 2  

0.1 

0 
5 0  1 0 0  1 5 0  2 0 0  2 5 0  

T o t a l  Buffer S i z e  

- 

~ 

Nonpump pump -B- - 0  

Ideal ~~~~ . - 

0.4 

0 . 3  

0 . 2  

Nonpump - D - -  

0 . 1  

0 
5 0  1 0 0  1 5 0  2 0 0  250 

T o t a l  B u f f e r  Sire 

0 . 2  

0 . 4  

....................................... 

.......... ~ ......... *... ...... D.. ..... 

1 
0.1 1 

Nonpump pump -B- - 0  

Ideal ~~~~ . 

5 0  1 0 0  1 5 0  2 0 0  2 5 0  
T o t a l  Buffer Size  

Fig. 8. Throughput of session,,. Fig. 9. Throughput of session,,. Fig. 10. Throughput of session,,. 

0.4 0.1 I 0.4 
B I I 

.z 0 . 3  '4 0 . 3  .; 0 . 3  

U Y U 
U U 

3 

U a m 
b. m m 

, , , 

3 0 . 2  3 0 . 2  3 0 . 2  
2 

6 0 . 1  5 0 . 1  ,a 0.1 

d 0 0 0 

J 3 
U U 

r: s 
3 

0 0 ii 
.c s 

5 0  1 0 0  1 5 0  200 2 5 0  50 1 0 0  1 5 0  2 0 0  2 5 0  50 1 0 0  1 5 0  2 0 0  250 
T o t a l  Buffer S i z e  T o t a l  Buffer S i z e  T o t a l  Buffer S i z e  

Fig. 11. Throughput of sessionll. 

Note that the Pump and the ldeal curves are virtually identical in Figs. 11,12, and 23 

Fig. 12. Throughput of ~ession,~. Fig. 13. Throughput of sessiongl. 

Nonp- - 0 . -  
Ideal ---- Ideal ~~~~ 

0 . 3  

S a 

2' 
2 
E 

5 0  100 1 5 0  2 0 0  2 5 0  
T o t a l  Buffer S i z e  

I 0 . 3  
.j 
U 

U 

s 2 0 . 2  

m 

I 
5 0  1 0 0  150 2 0 0  2 5 0  

T o t a l  Buffer S i z e  

"P -e- 
Nonpump -0.- 

Ideal - - ~ -  

............... 

O ' : I - _  .............. ............. 

50 100 150 200 250 
Total Buffer Size 

Fig. 14. Throughput of Fig. 15. Throughput of session,,. Fig. 16. Throughput of session,,. 

of service attack. Fig. 8, Fig. 9, and Fig. 10 show the perform- 
ance and fairness among sessions that send messages to H2. 

Note session,, achieves its demand rate as realized rate 
(0.30). Hence, the jitter in Fig. 8 is from the probabilistic 
nature of the input rather than any effects from routing de- 
vices.' This probabilistic jitter slightly affects the through- 
put of other sessions (Fig. 9 and Fig. 10). 

Fig. 9 and Fig. 10 also show the effect of the scheduler, 
and the size of the output buffer and the Fair size to the 
fairness and throughput of each session, since 0.4 and 0.5 
are both greater than 0.35. As the size of output buffer 
grows the throughput approaches its ideal (fairness) rate. 

Even though we do not show the performance of other 
sessions, the network Pump performs very well (basically 
the same as in Figs. 11,12,13,14,15, and 16). 

2. The simulator never exactly generates a rate of 0.3, hence the jitter. 

4.3 Simulation Results Under Denial of 

To show the effect of a denial of service attack, we slow 
down the service rate (i.e., ,U,, = 0.1) of one High, namely 
H,. Figs. 11,12,13,14,15, and 16 show the performance and 
fairness comparison between the network Pump and the 
Nonpump. The performance of the network Pump is hardly 
affected by the attack. However, the performance of the 
Nonpump is greatly affected. The main reason for the deg- 
radation of performance is that all output buffer space is 
occupied by sessions that send messages to H2 so that the 
rest of sessions have to wait a long time to obtain them. 

Fig. 11, Fig. 12, and Fig. 13 show the throughputs of ses- 
sions to H,. 

These figures (Figs. 11, 12, and 13) show no jitter of 
throughput as the total buffer size increases. This shows 
that the probabilistic nature of inputs are all hidden because 

Service Attack 
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all input (demand) rates to HI are greater than its realized 
rate and messages are always waiting for their turn at the 
output buffer3 (the round-robin scheme takes a message 
from each buffer in turn and does not pass any buffer be- 
cause they always have a message ready to send). 

Fig. 14, Fig. 15, and Fig. 16 show the throughputs of dif- 
ferent inputs to H3. Again the jitter of throughput is from 
the probabilistic nature of inputs rather than the effect of 
different buffer sizes. 

We do not show throughputs of session,,, session,,, ses- 
sion,, because under the denial of service attack all cases 
have throughput values around 0.033. 

5 DISCUSSION 
This paper describes the need for a secure device that can 
route messages from (multiple) Lows to (multiple) Highs. 
Even though abstract composition problems have been well 
studied 1111, this paper shows that the actual design of such 
a device is quite complicated. This secure device should not 
only meet the requirements of conventional network rout- 
ers such as performance, reliability, and fairness, but also 
the requirements of security, such as minimal impact from 
covert channels and denial of service attacks. The network 
Pump that we introduced in this paper can balance the 
above requirements. 

It is interesting to note that the network Pump’s use of 
indirect acknowledgments is similar to ideas put forth in 
the mobile computing community [l]. Further, the network 
Pump’s stable storage is along the lines of ”packet caching” 
used in [25]. 

One of our future plans includes designing and building 
the network Pump on top of the ATM layer. We are also 
investigating extending the network environment described 
in this paper to deal with a more general lattice-type secu- 
rity structure. We refer to this as the ”generalized Pump.” 
Note that if we allow Lows (Highs) to conspire then we 
must redo our covert channel capacity analysis. We leave 
this as future work. 
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